Business Intelligence Controlling

La nueva generación del reporting económico-financiero y el control de gestión empresarial

Categoría: Python / Machine Learning

Aprendizaje supervisado con Python en Power BI: Clasificación

Introducción

El denominado Machine Learning es una rama de la inteligencia artificial que utiliza algoritmos con el objetivo de automatizar la construcción de modelos analíticos. Se basa en la idea de que los sistemas pueden aprender de observaciones pasadas, identificar patrones, tomar decisiones y predecir comportamientos futuros sin necesidad de programación explicita.

Dentro del Machine Learning clásico nos encontramos con dos tipos principales de tareas: supervisadas y no supervisadas. La diferencia entre ambas reside en que el aprendizaje supervisado se realiza utilizando datos con etiquetas ya identificadas, o en otras palabras, tenemos un conocimiento previo de cuáles pueden ser los valores de salida para nuestras muestras. Por lo tanto, el objetivo del aprendizaje supervisado es aprender una función que, dada una muestra de datos y salidas posibles, se aproxime mejor a la relación entre entrada y salida observable en los datos. El aprendizaje no supervisado, por otro lado, no tiene resultados etiquetados, por lo que su objetivo es inferir la estructura natural presente dentro de un conjunto de puntos de datos.

Leer más

Scripts de Python en Power BI

La integración de Python en Power BI es, sin duda, una de las funcionalidades introducidas por el equipo más importantes hasta la fecha. Al igual que R, Python nos ofrece numerosas posibilidades para realizar tareas durante el proceso de ETL en nuestras propias consultas, y crear visualizaciones atractivas y útiles mediante el uso de sus librerías orientadas a la representación gráfica de información estadística. Además, nos proporciona la capacidad de incrementar de forma exponencial la competencia analítica de nuestros informes y cuadros de mando, mediante el uso de módulos de Machine Learning capaces de identificar patrones complejos en los datos con el objetivo de predecir comportamientos futuros, proporcionándonos información de alto valor para la toma de decisiones de negocio.

Ejecutar scripts de Python en el editor de consultas

El lenguaje de programación Phyton cuenta con librerías orientadas al análisis de datos con multitud de funciones y métodos que podemos usar durante las etapas de transformación y limpieza, antes de cargar las consultas al modelo. La librería pandas nos permite manipular Data Frames con un gran número de funciones diseñadas específicamente para los procesos de preparación de datos. Vamos a ver un ejemplo donde tenemos una tabla con datos de clientes que contiene valores null en las columnas que especifican el peso y la altura de cada uno de ellos:

Leer más

BI CONTROLLING 2023 © TODOS LOS DERECHOS RESERVADOS